If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7p^2-49p=0
a = 7; b = -49; c = 0;
Δ = b2-4ac
Δ = -492-4·7·0
Δ = 2401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2401}=49$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-49)-49}{2*7}=\frac{0}{14} =0 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-49)+49}{2*7}=\frac{98}{14} =7 $
| 4a(+3)=48 | | x^2+12x+22=6 | | (2x-3)2=4x-6 | | 79y+2)-(4y-10)=44-2y+5 | | 6×(8+6x)=96 | | 2000000=12*x*20 | | g(17)=-5/2 | | 2000000=12*2000*x | | 2000000=12*x | | -272=29v | | B2+7b=30 | | 8y+12y=ъъъщ | | x-(2x+3)=0 | | -3(2w)=-6 | | -5x²+15x+50=0 | | )6x+7=3x+19 | | (i-4)/3=7i | | g(3)=5/2 | | k^2-8k-15=0 | | 1/3(i-4)=7i | | 1.6=x/1.8 | | 12x+5=6x+3 | | 4+4k+4k^2=21k | | 12x+1/3-5(x-4)/4=1/6-13x-16/12 | | g(0)=5/2 | | (x÷4)+7=(x÷5)+12 | | 60x+36=40-3x | | 2=(m+2/3) | | (x+1)*3=5 | | (x+1)x3=5 | | -8+18=4x-9x | | 2(4t-1)²=50 |